Eigen  3.2.10
 
Loading...
Searching...
No Matches
AngleAxis.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_ANGLEAXIS_H
11#define EIGEN_ANGLEAXIS_H
12
13namespace Eigen {
14
40
41namespace internal {
42template<typename _Scalar> struct traits<AngleAxis<_Scalar> >
43{
44 typedef _Scalar Scalar;
45};
46}
47
48template<typename _Scalar>
49class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
50{
51 typedef RotationBase<AngleAxis<_Scalar>,3> Base;
52
53public:
54
55 using Base::operator*;
56
57 enum { Dim = 3 };
59 typedef _Scalar Scalar;
60 typedef Matrix<Scalar,3,3> Matrix3;
61 typedef Matrix<Scalar,3,1> Vector3;
62 typedef Quaternion<Scalar> QuaternionType;
63
64protected:
65
66 Vector3 m_axis;
67 Scalar m_angle;
68
69public:
70
78 template<typename Derived>
79 inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
81 template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
83 template<typename Derived>
84 inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
85
87 Scalar angle() const { return m_angle; }
89 Scalar& angle() { return m_angle; }
90
92 const Vector3& axis() const { return m_axis; }
97 Vector3& axis() { return m_axis; }
98
100 inline QuaternionType operator* (const AngleAxis& other) const
101 { return QuaternionType(*this) * QuaternionType(other); }
102
104 inline QuaternionType operator* (const QuaternionType& other) const
105 { return QuaternionType(*this) * other; }
106
108 friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
109 { return a * QuaternionType(b); }
110
113 { return AngleAxis(-m_angle, m_axis); }
114
115 template<class QuatDerived>
116 AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
117 template<typename Derived>
118 AngleAxis& operator=(const MatrixBase<Derived>& m);
119
120 template<typename Derived>
121 AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
122 Matrix3 toRotationMatrix(void) const;
123
129 template<typename NewScalarType>
130 inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
131 { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
132
134 template<typename OtherScalarType>
135 inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
136 {
137 m_axis = other.axis().template cast<Scalar>();
138 m_angle = Scalar(other.angle());
139 }
140
141 static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
142
147 bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
148 { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
149};
150
157
164template<typename Scalar>
165template<typename QuatDerived>
166AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
167{
168 using std::acos;
169 using std::min;
170 using std::max;
171 using std::sqrt;
172 Scalar n2 = q.vec().squaredNorm();
173 if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
174 {
175 m_angle = Scalar(0);
176 m_axis << Scalar(1), Scalar(0), Scalar(0);
177 }
178 else
179 {
180 m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
181 m_axis = q.vec() / sqrt(n2);
182 }
183 return *this;
184}
185
188template<typename Scalar>
189template<typename Derived>
190AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
191{
192 // Since a direct conversion would not be really faster,
193 // let's use the robust Quaternion implementation:
194 return *this = QuaternionType(mat);
195}
196
200template<typename Scalar>
201template<typename Derived>
202AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
203{
204 return *this = QuaternionType(mat);
205}
206
209template<typename Scalar>
210typename AngleAxis<Scalar>::Matrix3
212{
213 using std::sin;
214 using std::cos;
215 Matrix3 res;
216 Vector3 sin_axis = sin(m_angle) * m_axis;
217 Scalar c = cos(m_angle);
218 Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
219
220 Scalar tmp;
221 tmp = cos1_axis.x() * m_axis.y();
222 res.coeffRef(0,1) = tmp - sin_axis.z();
223 res.coeffRef(1,0) = tmp + sin_axis.z();
224
225 tmp = cos1_axis.x() * m_axis.z();
226 res.coeffRef(0,2) = tmp + sin_axis.y();
227 res.coeffRef(2,0) = tmp - sin_axis.y();
228
229 tmp = cos1_axis.y() * m_axis.z();
230 res.coeffRef(1,2) = tmp - sin_axis.x();
231 res.coeffRef(2,1) = tmp + sin_axis.x();
232
233 res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c;
234
235 return res;
236}
237
238} // end namespace Eigen
239
240#endif // EIGEN_ANGLEAXIS_H
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Definition AngleAxis.h:50
Matrix3 toRotationMatrix(void) const
Definition AngleAxis.h:211
AngleAxis()
Definition AngleAxis.h:72
AngleAxis(const MatrixBase< Derived > &m)
Definition AngleAxis.h:84
bool isApprox(const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
Definition AngleAxis.h:147
internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type cast() const
Definition AngleAxis.h:130
QuaternionType operator*(const AngleAxis &other) const
Definition AngleAxis.h:100
Scalar angle() const
Definition AngleAxis.h:87
Scalar & angle()
Definition AngleAxis.h:89
AngleAxis(const QuaternionBase< QuatDerived > &q)
Definition AngleAxis.h:81
const Vector3 & axis() const
Definition AngleAxis.h:92
Vector3 & axis()
Definition AngleAxis.h:97
AngleAxis inverse() const
Definition AngleAxis.h:112
AngleAxis(const AngleAxis< OtherScalarType > &other)
Definition AngleAxis.h:135
_Scalar Scalar
Definition AngleAxis.h:59
AngleAxis(const Scalar &angle, const MatrixBase< Derived > &axis)
Definition AngleAxis.h:79
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
const CwiseBinaryOp< internal::scalar_product_op< typename Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > ::Scalar, typename OtherDerived ::Scalar >, const Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols >, const OtherDerived > cwiseProduct(const Eigen::MatrixBase< OtherDerived > &other) const
Definition MatrixBase.h:23
static const BasisReturnType UnitX()
Definition CwiseNullaryOp.h:829
MatrixBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::template DiagonalIndexReturnType< Index >::Type diagonal()
Definition Diagonal.h:221
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:129
Base class for quaternion expressions.
Definition Quaternion.h:36
Scalar w() const
Definition Quaternion.h:66
const VectorBlock< const Coefficients, 3 > vec() const
Definition Quaternion.h:78
The quaternion class used to represent 3D orientations and rotations.
Definition Quaternion.h:227
Common base class for compact rotation representations.
Definition RotationBase.h:30
AngleAxis< double > AngleAxisd
Definition AngleAxis.h:156
AngleAxis< float > AngleAxisf
Definition AngleAxis.h:153
Definition LDLT.h:18