ei_kissfft_impl.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Mark Borgerding mark a borgerding net
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10namespace Eigen {
11
12namespace internal {
13
14 // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
15 // Copyright 2003-2009 Mark Borgerding
16
17template <typename _Scalar>
18struct kiss_cpx_fft
19{
20 typedef _Scalar Scalar;
21 typedef std::complex<Scalar> Complex;
22 std::vector<Complex> m_twiddles;
23 std::vector<int> m_stageRadix;
24 std::vector<int> m_stageRemainder;
25 std::vector<Complex> m_scratchBuf;
26 bool m_inverse;
27
28 inline
29 void make_twiddles(int nfft,bool inverse)
30 {
31 m_inverse = inverse;
32 m_twiddles.resize(nfft);
33 Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
34 for (int i=0;i<nfft;++i)
35 m_twiddles[i] = exp( Complex(0,i*phinc) );
36 }
37
38 void factorize(int nfft)
39 {
40 //start factoring out 4's, then 2's, then 3,5,7,9,...
41 int n= nfft;
42 int p=4;
43 do {
44 while (n % p) {
45 switch (p) {
46 case 4: p = 2; break;
47 case 2: p = 3; break;
48 default: p += 2; break;
49 }
50 if (p*p>n)
51 p=n;// impossible to have a factor > sqrt(n)
52 }
53 n /= p;
54 m_stageRadix.push_back(p);
55 m_stageRemainder.push_back(n);
56 if ( p > 5 )
57 m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
58 }while(n>1);
59 }
60
61 template <typename _Src>
62 inline
63 void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
64 {
65 int p = m_stageRadix[stage];
66 int m = m_stageRemainder[stage];
67 Complex * Fout_beg = xout;
68 Complex * Fout_end = xout + p*m;
69
70 if (m>1) {
71 do{
72 // recursive call:
73 // DFT of size m*p performed by doing
74 // p instances of smaller DFTs of size m,
75 // each one takes a decimated version of the input
76 work(stage+1, xout , xin, fstride*p,in_stride);
77 xin += fstride*in_stride;
78 }while( (xout += m) != Fout_end );
79 }else{
80 do{
81 *xout = *xin;
82 xin += fstride*in_stride;
83 }while(++xout != Fout_end );
84 }
85 xout=Fout_beg;
86
87 // recombine the p smaller DFTs
88 switch (p) {
89 case 2: bfly2(xout,fstride,m); break;
90 case 3: bfly3(xout,fstride,m); break;
91 case 4: bfly4(xout,fstride,m); break;
92 case 5: bfly5(xout,fstride,m); break;
93 default: bfly_generic(xout,fstride,m,p); break;
94 }
95 }
96
97 inline
98 void bfly2( Complex * Fout, const size_t fstride, int m)
99 {
100 for (int k=0;k<m;++k) {
101 Complex t = Fout[m+k] * m_twiddles[k*fstride];
102 Fout[m+k] = Fout[k] - t;
103 Fout[k] += t;
104 }
105 }
106
107 inline
108 void bfly4( Complex * Fout, const size_t fstride, const size_t m)
109 {
110 Complex scratch[6];
111 int negative_if_inverse = m_inverse * -2 +1;
112 for (size_t k=0;k<m;++k) {
113 scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
114 scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
115 scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
116 scratch[5] = Fout[k] - scratch[1];
117
118 Fout[k] += scratch[1];
119 scratch[3] = scratch[0] + scratch[2];
120 scratch[4] = scratch[0] - scratch[2];
121 scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
122
123 Fout[k+2*m] = Fout[k] - scratch[3];
124 Fout[k] += scratch[3];
125 Fout[k+m] = scratch[5] + scratch[4];
126 Fout[k+3*m] = scratch[5] - scratch[4];
127 }
128 }
129
130 inline
131 void bfly3( Complex * Fout, const size_t fstride, const size_t m)
132 {
133 size_t k=m;
134 const size_t m2 = 2*m;
135 Complex *tw1,*tw2;
136 Complex scratch[5];
137 Complex epi3;
138 epi3 = m_twiddles[fstride*m];
139
140 tw1=tw2=&m_twiddles[0];
141
142 do{
143 scratch[1]=Fout[m] * *tw1;
144 scratch[2]=Fout[m2] * *tw2;
145
146 scratch[3]=scratch[1]+scratch[2];
147 scratch[0]=scratch[1]-scratch[2];
148 tw1 += fstride;
149 tw2 += fstride*2;
150 Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
151 scratch[0] *= epi3.imag();
152 *Fout += scratch[3];
153 Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
154 Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
155 ++Fout;
156 }while(--k);
157 }
158
159 inline
160 void bfly5( Complex * Fout, const size_t fstride, const size_t m)
161 {
162 Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
163 size_t u;
164 Complex scratch[13];
165 Complex * twiddles = &m_twiddles[0];
166 Complex *tw;
167 Complex ya,yb;
168 ya = twiddles[fstride*m];
169 yb = twiddles[fstride*2*m];
170
171 Fout0=Fout;
172 Fout1=Fout0+m;
173 Fout2=Fout0+2*m;
174 Fout3=Fout0+3*m;
175 Fout4=Fout0+4*m;
176
177 tw=twiddles;
178 for ( u=0; u<m; ++u ) {
179 scratch[0] = *Fout0;
180
181 scratch[1] = *Fout1 * tw[u*fstride];
182 scratch[2] = *Fout2 * tw[2*u*fstride];
183 scratch[3] = *Fout3 * tw[3*u*fstride];
184 scratch[4] = *Fout4 * tw[4*u*fstride];
185
186 scratch[7] = scratch[1] + scratch[4];
187 scratch[10] = scratch[1] - scratch[4];
188 scratch[8] = scratch[2] + scratch[3];
189 scratch[9] = scratch[2] - scratch[3];
190
191 *Fout0 += scratch[7];
192 *Fout0 += scratch[8];
193
194 scratch[5] = scratch[0] + Complex(
195 (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
196 (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
197 );
198
199 scratch[6] = Complex(
200 (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
201 -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
202 );
203
204 *Fout1 = scratch[5] - scratch[6];
205 *Fout4 = scratch[5] + scratch[6];
206
207 scratch[11] = scratch[0] +
208 Complex(
209 (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
210 (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
211 );
212
213 scratch[12] = Complex(
214 -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
215 (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
216 );
217
218 *Fout2=scratch[11]+scratch[12];
219 *Fout3=scratch[11]-scratch[12];
220
221 ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
222 }
223 }
224
225 /* perform the butterfly for one stage of a mixed radix FFT */
226 inline
227 void bfly_generic(
228 Complex * Fout,
229 const size_t fstride,
230 int m,
231 int p
232 )
233 {
234 int u,k,q1,q;
235 Complex * twiddles = &m_twiddles[0];
236 Complex t;
237 int Norig = static_cast<int>(m_twiddles.size());
238 Complex * scratchbuf = &m_scratchBuf[0];
239
240 for ( u=0; u<m; ++u ) {
241 k=u;
242 for ( q1=0 ; q1<p ; ++q1 ) {
243 scratchbuf[q1] = Fout[ k ];
244 k += m;
245 }
246
247 k=u;
248 for ( q1=0 ; q1<p ; ++q1 ) {
249 int twidx=0;
250 Fout[ k ] = scratchbuf[0];
251 for (q=1;q<p;++q ) {
252 twidx += static_cast<int>(fstride) * k;
253 if (twidx>=Norig) twidx-=Norig;
254 t=scratchbuf[q] * twiddles[twidx];
255 Fout[ k ] += t;
256 }
257 k += m;
258 }
259 }
260 }
261};
262
263template <typename _Scalar>
264struct kissfft_impl
265{
266 typedef _Scalar Scalar;
267 typedef std::complex<Scalar> Complex;
268
269 void clear()
270 {
271 m_plans.clear();
272 m_realTwiddles.clear();
273 }
274
275 inline
276 void fwd( Complex * dst,const Complex *src,int nfft)
277 {
278 get_plan(nfft,false).work(0, dst, src, 1,1);
279 }
280
281 inline
282 void fwd2( Complex * dst,const Complex *src,int n0,int n1)
283 {
284 EIGEN_UNUSED_VARIABLE(dst);
285 EIGEN_UNUSED_VARIABLE(src);
286 EIGEN_UNUSED_VARIABLE(n0);
287 EIGEN_UNUSED_VARIABLE(n1);
288 }
289
290 inline
291 void inv2( Complex * dst,const Complex *src,int n0,int n1)
292 {
293 EIGEN_UNUSED_VARIABLE(dst);
294 EIGEN_UNUSED_VARIABLE(src);
295 EIGEN_UNUSED_VARIABLE(n0);
296 EIGEN_UNUSED_VARIABLE(n1);
297 }
298
299 // real-to-complex forward FFT
300 // perform two FFTs of src even and src odd
301 // then twiddle to recombine them into the half-spectrum format
302 // then fill in the conjugate symmetric half
303 inline
304 void fwd( Complex * dst,const Scalar * src,int nfft)
305 {
306 if ( nfft&3 ) {
307 // use generic mode for odd
308 m_tmpBuf1.resize(nfft);
309 get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
310 std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
311 }else{
312 int ncfft = nfft>>1;
313 int ncfft2 = nfft>>2;
314 Complex * rtw = real_twiddles(ncfft2);
315
316 // use optimized mode for even real
317 fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
318 Complex dc = dst[0].real() + dst[0].imag();
319 Complex nyquist = dst[0].real() - dst[0].imag();
320 int k;
321 for ( k=1;k <= ncfft2 ; ++k ) {
322 Complex fpk = dst[k];
323 Complex fpnk = conj(dst[ncfft-k]);
324 Complex f1k = fpk + fpnk;
325 Complex f2k = fpk - fpnk;
326 Complex tw= f2k * rtw[k-1];
327 dst[k] = (f1k + tw) * Scalar(.5);
328 dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
329 }
330 dst[0] = dc;
331 dst[ncfft] = nyquist;
332 }
333 }
334
335 // inverse complex-to-complex
336 inline
337 void inv(Complex * dst,const Complex *src,int nfft)
338 {
339 get_plan(nfft,true).work(0, dst, src, 1,1);
340 }
341
342 // half-complex to scalar
343 inline
344 void inv( Scalar * dst,const Complex * src,int nfft)
345 {
346 if (nfft&3) {
347 m_tmpBuf1.resize(nfft);
348 m_tmpBuf2.resize(nfft);
349 std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
350 for (int k=1;k<(nfft>>1)+1;++k)
351 m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
352 inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
353 for (int k=0;k<nfft;++k)
354 dst[k] = m_tmpBuf2[k].real();
355 }else{
356 // optimized version for multiple of 4
357 int ncfft = nfft>>1;
358 int ncfft2 = nfft>>2;
359 Complex * rtw = real_twiddles(ncfft2);
360 m_tmpBuf1.resize(ncfft);
361 m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
362 for (int k = 1; k <= ncfft / 2; ++k) {
363 Complex fk = src[k];
364 Complex fnkc = conj(src[ncfft-k]);
365 Complex fek = fk + fnkc;
366 Complex tmp = fk - fnkc;
367 Complex fok = tmp * conj(rtw[k-1]);
368 m_tmpBuf1[k] = fek + fok;
369 m_tmpBuf1[ncfft-k] = conj(fek - fok);
370 }
371 get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
372 }
373 }
374
375 protected:
376 typedef kiss_cpx_fft<Scalar> PlanData;
377 typedef std::map<int,PlanData> PlanMap;
378
379 PlanMap m_plans;
380 std::map<int, std::vector<Complex> > m_realTwiddles;
381 std::vector<Complex> m_tmpBuf1;
382 std::vector<Complex> m_tmpBuf2;
383
384 inline
385 int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }
386
387 inline
388 PlanData & get_plan(int nfft, bool inverse)
389 {
390 // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
391 PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
392 if ( pd.m_twiddles.size() == 0 ) {
393 pd.make_twiddles(nfft,inverse);
394 pd.factorize(nfft);
395 }
396 return pd;
397 }
398
399 inline
400 Complex * real_twiddles(int ncfft2)
401 {
402 std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
403 if ( (int)twidref.size() != ncfft2 ) {
404 twidref.resize(ncfft2);
405 int ncfft= ncfft2<<1;
406 Scalar pi = acos( Scalar(-1) );
407 for (int k=1;k<=ncfft2;++k)
408 twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
409 }
410 return &twidref[0];
411 }
412};
413
414} // end namespace internal
415
416} // end namespace Eigen
417
418/* vim: set filetype=cpp et sw=2 ts=2 ai: */