PolynomialUtils.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_POLYNOMIAL_UTILS_H
11#define EIGEN_POLYNOMIAL_UTILS_H
12
13namespace Eigen {
14
26template <typename Polynomials, typename T>
27inline
28T poly_eval_horner( const Polynomials& poly, const T& x )
29{
30 T val=poly[poly.size()-1];
31 for(DenseIndex i=poly.size()-2; i>=0; --i ){
32 val = val*x + poly[i]; }
33 return val;
34}
35
44template <typename Polynomials, typename T>
45inline
46T poly_eval( const Polynomials& poly, const T& x )
47{
48 typedef typename NumTraits<T>::Real Real;
49
50 if( internal::abs2( x ) <= Real(1) ){
51 return poly_eval_horner( poly, x ); }
52 else
53 {
54 T val=poly[0];
55 T inv_x = T(1)/x;
56 for( DenseIndex i=1; i<poly.size(); ++i ){
57 val = val*inv_x + poly[i]; }
58
59 return std::pow(x,(T)(poly.size()-1)) * val;
60 }
61}
62
73template <typename Polynomial>
74inline
75typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
76{
77 typedef typename Polynomial::Scalar Scalar;
78 typedef typename NumTraits<Scalar>::Real Real;
79
80 assert( Scalar(0) != poly[poly.size()-1] );
81 const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
82 Real cb(0);
83
84 for( DenseIndex i=0; i<poly.size()-1; ++i ){
85 cb += internal::abs(poly[i]*inv_leading_coeff); }
86 return cb + Real(1);
87}
88
95template <typename Polynomial>
96inline
97typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
98{
99 typedef typename Polynomial::Scalar Scalar;
100 typedef typename NumTraits<Scalar>::Real Real;
101
102 DenseIndex i=0;
103 while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
104 if( poly.size()-1 == i ){
105 return Real(1); }
106
107 const Scalar inv_min_coeff = Scalar(1)/poly[i];
108 Real cb(1);
109 for( DenseIndex j=i+1; j<poly.size(); ++j ){
110 cb += internal::abs(poly[j]*inv_min_coeff); }
111 return Real(1)/cb;
112}
113
124template <typename RootVector, typename Polynomial>
125void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
126{
127
128 typedef typename Polynomial::Scalar Scalar;
129
130 poly.setZero( rv.size()+1 );
131 poly[0] = -rv[0]; poly[1] = Scalar(1);
132 for( DenseIndex i=1; i< rv.size(); ++i )
133 {
134 for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
135 poly[0] = -rv[i]*poly[0];
136 }
137}
138
139} // end namespace Eigen
140
141#endif // EIGEN_POLYNOMIAL_UTILS_H