GMRES.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_GMRES_H
12#define EIGEN_GMRES_H
13
14namespace Eigen {
15
16namespace internal {
17
55template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
56bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond,
57 int &iters, const int &restart, typename Dest::RealScalar & tol_error) {
58
59 using std::sqrt;
60 using std::abs;
61
62 typedef typename Dest::RealScalar RealScalar;
63 typedef typename Dest::Scalar Scalar;
64 typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType;
65 typedef Matrix < Scalar, Dynamic, 1 > VectorType;
66 typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType;
67
68 RealScalar tol = tol_error;
69 const int maxIters = iters;
70 iters = 0;
71
72 const int m = mat.rows();
73
74 VectorType p0 = rhs - mat*x;
75 VectorType r0 = precond.solve(p0);
76// RealScalar r0_sqnorm = r0.squaredNorm();
77
78 VectorType w = VectorType::Zero(restart + 1);
79
80 FMatrixType H = FMatrixType::Zero(m, restart + 1);
81 VectorType tau = VectorType::Zero(restart + 1);
82 std::vector < JacobiRotation < Scalar > > G(restart);
83
84 // generate first Householder vector
85 VectorType e;
86 RealScalar beta;
87 r0.makeHouseholder(e, tau.coeffRef(0), beta);
88 w(0)=(Scalar) beta;
89 H.bottomLeftCorner(m - 1, 1) = e;
90
91 for (int k = 1; k <= restart; ++k) {
92
93 ++iters;
94
95 VectorType v = VectorType::Unit(m, k - 1), workspace(m);
96
97 // apply Householder reflections H_{1} ... H_{k-1} to v
98 for (int i = k - 1; i >= 0; --i) {
99 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
100 }
101
102 // apply matrix M to v: v = mat * v;
103 VectorType t=mat*v;
104 v=precond.solve(t);
105
106 // apply Householder reflections H_{k-1} ... H_{1} to v
107 for (int i = 0; i < k; ++i) {
108 v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
109 }
110
111 if (v.tail(m - k).norm() != 0.0) {
112
113 if (k <= restart) {
114
115 // generate new Householder vector
116 VectorType e(m - k - 1);
117 RealScalar beta;
118 v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta);
119 H.col(k).tail(m - k - 1) = e;
120
121 // apply Householder reflection H_{k} to v
122 v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data());
123
124 }
125 }
126
127 if (k > 1) {
128 for (int i = 0; i < k - 1; ++i) {
129 // apply old Givens rotations to v
130 v.applyOnTheLeft(i, i + 1, G[i].adjoint());
131 }
132 }
133
134 if (k<m && v(k) != (Scalar) 0) {
135 // determine next Givens rotation
136 G[k - 1].makeGivens(v(k - 1), v(k));
137
138 // apply Givens rotation to v and w
139 v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
140 w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint());
141
142 }
143
144 // insert coefficients into upper matrix triangle
145 H.col(k - 1).head(k) = v.head(k);
146
147 bool stop=(k==m || abs(w(k)) < tol || iters == maxIters);
148
149 if (stop || k == restart) {
150
151 // solve upper triangular system
152 VectorType y = w.head(k);
153 H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y);
154
155 // use Horner-like scheme to calculate solution vector
156 VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1);
157
158 // apply Householder reflection H_{k} to x_new
159 x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data());
160
161 for (int i = k - 2; i >= 0; --i) {
162 x_new += y(i) * VectorType::Unit(m, i);
163 // apply Householder reflection H_{i} to x_new
164 x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data());
165 }
166
167 x += x_new;
168
169 if (stop) {
170 return true;
171 } else {
172 k=0;
173
174 // reset data for a restart r0 = rhs - mat * x;
175 VectorType p0=mat*x;
176 VectorType p1=precond.solve(p0);
177 r0 = rhs - p1;
178// r0_sqnorm = r0.squaredNorm();
179 w = VectorType::Zero(restart + 1);
180 H = FMatrixType::Zero(m, restart + 1);
181 tau = VectorType::Zero(restart + 1);
182
183 // generate first Householder vector
184 RealScalar beta;
185 r0.makeHouseholder(e, tau.coeffRef(0), beta);
186 w(0)=(Scalar) beta;
187 H.bottomLeftCorner(m - 1, 1) = e;
188
189 }
190
191 }
192
193
194
195 }
196
197 return false;
198
199}
200
201}
202
203template< typename _MatrixType,
205class GMRES;
206
207namespace internal {
208
209template< typename _MatrixType, typename _Preconditioner>
210struct traits<GMRES<_MatrixType,_Preconditioner> >
211{
212 typedef _MatrixType MatrixType;
213 typedef _Preconditioner Preconditioner;
214};
215
216}
217
263template< typename _MatrixType, typename _Preconditioner>
264class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> >
265{
266 typedef IterativeSolverBase<GMRES> Base;
267 using Base::mp_matrix;
268 using Base::m_error;
269 using Base::m_iterations;
270 using Base::m_info;
271 using Base::m_isInitialized;
272
273private:
274 int m_restart;
275
276public:
277 typedef _MatrixType MatrixType;
278 typedef typename MatrixType::Scalar Scalar;
279 typedef typename MatrixType::Index Index;
280 typedef typename MatrixType::RealScalar RealScalar;
281 typedef _Preconditioner Preconditioner;
282
283public:
284
286 GMRES() : Base(), m_restart(30) {}
287
298 GMRES(const MatrixType& A) : Base(A), m_restart(30) {}
299
300 ~GMRES() {}
301
304 int get_restart() { return m_restart; }
305
309 void set_restart(const int restart) { m_restart=restart; }
310
316 template<typename Rhs,typename Guess>
317 inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess>
318 solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
319 {
320 eigen_assert(m_isInitialized && "GMRES is not initialized.");
321 eigen_assert(Base::rows()==b.rows()
322 && "GMRES::solve(): invalid number of rows of the right hand side matrix b");
323 return internal::solve_retval_with_guess
324 <GMRES, Rhs, Guess>(*this, b.derived(), x0);
325 }
326
328 template<typename Rhs,typename Dest>
329 void _solveWithGuess(const Rhs& b, Dest& x) const
330 {
331 bool failed = false;
332 for(int j=0; j<b.cols(); ++j)
333 {
334 m_iterations = Base::maxIterations();
335 m_error = Base::m_tolerance;
336
337 typename Dest::ColXpr xj(x,j);
338 if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error))
339 failed = true;
340 }
341 m_info = failed ? NumericalIssue
342 : m_error <= Base::m_tolerance ? Success
344 m_isInitialized = true;
345 }
346
348 template<typename Rhs,typename Dest>
349 void _solve(const Rhs& b, Dest& x) const
350 {
351 x.setZero();
352 _solveWithGuess(b,x);
353 }
354
355protected:
356
357};
358
359
360namespace internal {
361
362 template<typename _MatrixType, typename _Preconditioner, typename Rhs>
363struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs>
364 : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs>
365{
366 typedef GMRES<_MatrixType, _Preconditioner> Dec;
367 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
368
369 template<typename Dest> void evalTo(Dest& dst) const
370 {
371 dec()._solve(rhs(),dst);
372 }
373};
374
375} // end namespace internal
376
377} // end namespace Eigen
378
379#endif // EIGEN_GMRES_H
A GMRES solver for sparse square problems.
Definition GMRES.h:265
int get_restart()
Definition GMRES.h:304
void set_restart(const int restart)
Definition GMRES.h:309
const internal::solve_retval_with_guess< GMRES, Rhs, Guess > solveWithGuess(const MatrixBase< Rhs > &b, const Guess &x0) const
Definition GMRES.h:318
GMRES(const MatrixType &A)
Definition GMRES.h:298
GMRES()
Definition GMRES.h:286
NumericalIssue