TriangularSolverMatrix.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
11#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17// if the rhs is row major, let's transpose the product
18template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
19struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
20{
21 static EIGEN_DONT_INLINE void run(
22 Index size, Index cols,
23 const Scalar* tri, Index triStride,
24 Scalar* _other, Index otherStride,
25 level3_blocking<Scalar,Scalar>& blocking)
26 {
27 triangular_solve_matrix<
28 Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
29 (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
30 NumTraits<Scalar>::IsComplex && Conjugate,
31 TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
32 ::run(size, cols, tri, triStride, _other, otherStride, blocking);
33 }
34};
35
36/* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
37 */
38template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
39struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
40{
41 static EIGEN_DONT_INLINE void run(
42 Index size, Index otherSize,
43 const Scalar* _tri, Index triStride,
44 Scalar* _other, Index otherStride,
45 level3_blocking<Scalar,Scalar>& blocking)
46 {
47 Index cols = otherSize;
48 const_blas_data_mapper<Scalar, Index, TriStorageOrder> tri(_tri,triStride);
49 blas_data_mapper<Scalar, Index, ColMajor> other(_other,otherStride);
50
51 typedef gebp_traits<Scalar,Scalar> Traits;
52 enum {
53 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
54 IsLower = (Mode&Lower) == Lower
55 };
56
57 Index kc = blocking.kc(); // cache block size along the K direction
58 Index mc = (std::min)(size,blocking.mc()); // cache block size along the M direction
59
60 std::size_t sizeA = kc*mc;
61 std::size_t sizeB = kc*cols;
62 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
63
64 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
65 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
66 ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
67
68 conj_if<Conjugate> conj;
69 gebp_kernel<Scalar, Scalar, Index, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
70 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
71 gemm_pack_rhs<Scalar, Index, Traits::nr, ColMajor, false, true> pack_rhs;
72
73 // the goal here is to subdivise the Rhs panels such that we keep some cache
74 // coherence when accessing the rhs elements
75 std::ptrdiff_t l1, l2;
76 manage_caching_sizes(GetAction, &l1, &l2);
77 Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * otherStride) : 0;
78 subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
79
80 for(Index k2=IsLower ? 0 : size;
81 IsLower ? k2<size : k2>0;
82 IsLower ? k2+=kc : k2-=kc)
83 {
84 const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
85
86 // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
87 // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
88 // A11 (the triangular part) and A21 the remaining rectangular part.
89 // Then the high level algorithm is:
90 // - B = R1 => general block copy (done during the next step)
91 // - R1 = A11^-1 B => tricky part
92 // - update B from the new R1 => actually this has to be performed continuously during the above step
93 // - R2 -= A21 * B => GEPP
94
95 // The tricky part: compute R1 = A11^-1 B while updating B from R1
96 // The idea is to split A11 into multiple small vertical panels.
97 // Each panel can be split into a small triangular part T1k which is processed without optimization,
98 // and the remaining small part T2k which is processed using gebp with appropriate block strides
99 for(Index j2=0; j2<cols; j2+=subcols)
100 {
101 Index actual_cols = (std::min)(cols-j2,subcols);
102 // for each small vertical panels [T1k^T, T2k^T]^T of lhs
103 for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
104 {
105 Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
106 // tr solve
107 for (Index k=0; k<actualPanelWidth; ++k)
108 {
109 // TODO write a small kernel handling this (can be shared with trsv)
110 Index i = IsLower ? k2+k1+k : k2-k1-k-1;
111 Index s = IsLower ? k2+k1 : i+1;
112 Index rs = actualPanelWidth - k - 1; // remaining size
113
114 Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
115 for (Index j=j2; j<j2+actual_cols; ++j)
116 {
117 if (TriStorageOrder==RowMajor)
118 {
119 Scalar b(0);
120 const Scalar* l = &tri(i,s);
121 Scalar* r = &other(s,j);
122 for (Index i3=0; i3<k; ++i3)
123 b += conj(l[i3]) * r[i3];
124
125 other(i,j) = (other(i,j) - b)*a;
126 }
127 else
128 {
129 Index s = IsLower ? i+1 : i-rs;
130 Scalar b = (other(i,j) *= a);
131 Scalar* r = &other(s,j);
132 const Scalar* l = &tri(s,i);
133 for (Index i3=0;i3<rs;++i3)
134 r[i3] -= b * conj(l[i3]);
135 }
136 }
137 }
138
139 Index lengthTarget = actual_kc-k1-actualPanelWidth;
140 Index startBlock = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
141 Index blockBOffset = IsLower ? k1 : lengthTarget;
142
143 // update the respective rows of B from other
144 pack_rhs(blockB+actual_kc*j2, &other(startBlock,j2), otherStride, actualPanelWidth, actual_cols, actual_kc, blockBOffset);
145
146 // GEBP
147 if (lengthTarget>0)
148 {
149 Index startTarget = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
150
151 pack_lhs(blockA, &tri(startTarget,startBlock), triStride, actualPanelWidth, lengthTarget);
152
153 gebp_kernel(&other(startTarget,j2), otherStride, blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
154 actualPanelWidth, actual_kc, 0, blockBOffset, blockW);
155 }
156 }
157 }
158
159 // R2 -= A21 * B => GEPP
160 {
161 Index start = IsLower ? k2+kc : 0;
162 Index end = IsLower ? size : k2-kc;
163 for(Index i2=start; i2<end; i2+=mc)
164 {
165 const Index actual_mc = (std::min)(mc,end-i2);
166 if (actual_mc>0)
167 {
168 pack_lhs(blockA, &tri(i2, IsLower ? k2 : k2-kc), triStride, actual_kc, actual_mc);
169
170 gebp_kernel(_other+i2, otherStride, blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0, blockW);
171 }
172 }
173 }
174 }
175 }
176};
177
178/* Optimized triangular solver with multiple left hand sides and the trinagular matrix on the right
179 */
180template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
181struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
182{
183 static EIGEN_DONT_INLINE void run(
184 Index size, Index otherSize,
185 const Scalar* _tri, Index triStride,
186 Scalar* _other, Index otherStride,
187 level3_blocking<Scalar,Scalar>& blocking)
188 {
189 Index rows = otherSize;
190 const_blas_data_mapper<Scalar, Index, TriStorageOrder> rhs(_tri,triStride);
191 blas_data_mapper<Scalar, Index, ColMajor> lhs(_other,otherStride);
192
193 typedef gebp_traits<Scalar,Scalar> Traits;
194 enum {
195 RhsStorageOrder = TriStorageOrder,
196 SmallPanelWidth = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
197 IsLower = (Mode&Lower) == Lower
198 };
199
200 Index kc = blocking.kc(); // cache block size along the K direction
201 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
202
203 std::size_t sizeA = kc*mc;
204 std::size_t sizeB = kc*size;
205 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
206
207 ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
208 ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
209 ei_declare_aligned_stack_constructed_variable(Scalar, blockW, sizeW, blocking.blockW());
210
211 conj_if<Conjugate> conj;
212 gebp_kernel<Scalar,Scalar, Index, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
213 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder> pack_rhs;
214 gemm_pack_rhs<Scalar, Index, Traits::nr,RhsStorageOrder,false,true> pack_rhs_panel;
215 gemm_pack_lhs<Scalar, Index, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
216
217 for(Index k2=IsLower ? size : 0;
218 IsLower ? k2>0 : k2<size;
219 IsLower ? k2-=kc : k2+=kc)
220 {
221 const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
222 Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
223
224 Index startPanel = IsLower ? 0 : k2+actual_kc;
225 Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
226 Scalar* geb = blockB+actual_kc*actual_kc;
227
228 if (rs>0) pack_rhs(geb, &rhs(actual_k2,startPanel), triStride, actual_kc, rs);
229
230 // triangular packing (we only pack the panels off the diagonal,
231 // neglecting the blocks overlapping the diagonal
232 {
233 for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
234 {
235 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
236 Index actual_j2 = actual_k2 + j2;
237 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
238 Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
239
240 if (panelLength>0)
241 pack_rhs_panel(blockB+j2*actual_kc,
242 &rhs(actual_k2+panelOffset, actual_j2), triStride,
243 panelLength, actualPanelWidth,
244 actual_kc, panelOffset);
245 }
246 }
247
248 for(Index i2=0; i2<rows; i2+=mc)
249 {
250 const Index actual_mc = (std::min)(mc,rows-i2);
251
252 // triangular solver kernel
253 {
254 // for each small block of the diagonal (=> vertical panels of rhs)
255 for (Index j2 = IsLower
256 ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
257 : Index(SmallPanelWidth)))
258 : 0;
259 IsLower ? j2>=0 : j2<actual_kc;
260 IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
261 {
262 Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
263 Index absolute_j2 = actual_k2 + j2;
264 Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
265 Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
266
267 // GEBP
268 if(panelLength>0)
269 {
270 gebp_kernel(&lhs(i2,absolute_j2), otherStride,
271 blockA, blockB+j2*actual_kc,
272 actual_mc, panelLength, actualPanelWidth,
273 Scalar(-1),
274 actual_kc, actual_kc, // strides
275 panelOffset, panelOffset, // offsets
276 blockW); // workspace
277 }
278
279 // unblocked triangular solve
280 for (Index k=0; k<actualPanelWidth; ++k)
281 {
282 Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
283
284 Scalar* r = &lhs(i2,j);
285 for (Index k3=0; k3<k; ++k3)
286 {
287 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
288 Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
289 for (Index i=0; i<actual_mc; ++i)
290 r[i] -= a[i] * b;
291 }
292 Scalar b = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(rhs(j,j));
293 for (Index i=0; i<actual_mc; ++i)
294 r[i] *= b;
295 }
296
297 // pack the just computed part of lhs to A
298 pack_lhs_panel(blockA, _other+absolute_j2*otherStride+i2, otherStride,
299 actualPanelWidth, actual_mc,
300 actual_kc, j2);
301 }
302 }
303
304 if (rs>0)
305 gebp_kernel(_other+i2+startPanel*otherStride, otherStride, blockA, geb,
306 actual_mc, actual_kc, rs, Scalar(-1),
307 -1, -1, 0, 0, blockW);
308 }
309 }
310 }
311};
312
313} // end namespace internal
314
315} // end namespace Eigen
316
317#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
@ RowMajor
Definition Constants.h:259
@ ColMajor
Definition Constants.h:257
@ UnitDiag
Definition Constants.h:166
@ Upper
Definition Constants.h:164
@ Lower
Definition Constants.h:162
@ OnTheLeft
Definition Constants.h:270
@ OnTheRight
Definition Constants.h:272
Definition LDLT.h:18