GeneralMatrixVector.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_VECTOR_H
11#define EIGEN_GENERAL_MATRIX_VECTOR_H
12
13namespace Eigen {
14
15namespace internal {
16
17/* Optimized col-major matrix * vector product:
18 * This algorithm processes 4 columns at onces that allows to both reduce
19 * the number of load/stores of the result by a factor 4 and to reduce
20 * the instruction dependency. Moreover, we know that all bands have the
21 * same alignment pattern.
22 *
23 * Mixing type logic: C += alpha * A * B
24 * | A | B |alpha| comments
25 * |real |cplx |cplx | no vectorization
26 * |real |cplx |real | alpha is converted to a cplx when calling the run function, no vectorization
27 * |cplx |real |cplx | invalid, the caller has to do tmp: = A * B; C += alpha*tmp
28 * |cplx |real |real | optimal case, vectorization possible via real-cplx mul
29 */
30template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
31struct general_matrix_vector_product<Index,LhsScalar,ColMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
32{
33typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
34
35enum {
36 Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
37 && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
38 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
39 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
40 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
41};
42
43typedef typename packet_traits<LhsScalar>::type _LhsPacket;
44typedef typename packet_traits<RhsScalar>::type _RhsPacket;
45typedef typename packet_traits<ResScalar>::type _ResPacket;
46
47typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
48typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
49typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
50
51EIGEN_DONT_INLINE static void run(
52 Index rows, Index cols,
53 const LhsScalar* lhs, Index lhsStride,
54 const RhsScalar* rhs, Index rhsIncr,
55 ResScalar* res, Index
56 #ifdef EIGEN_INTERNAL_DEBUGGING
57 resIncr
58 #endif
59 , RhsScalar alpha)
60{
61 eigen_internal_assert(resIncr==1);
62 #ifdef _EIGEN_ACCUMULATE_PACKETS
63 #error _EIGEN_ACCUMULATE_PACKETS has already been defined
64 #endif
65 #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) \
66 pstore(&res[j], \
67 padd(pload<ResPacket>(&res[j]), \
68 padd( \
69 padd(pcj.pmul(EIGEN_CAT(ploa , A0)<LhsPacket>(&lhs0[j]), ptmp0), \
70 pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs1[j]), ptmp1)), \
71 padd(pcj.pmul(EIGEN_CAT(ploa , A2)<LhsPacket>(&lhs2[j]), ptmp2), \
72 pcj.pmul(EIGEN_CAT(ploa , A13)<LhsPacket>(&lhs3[j]), ptmp3)) )))
73
74 conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
75 conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
76 if(ConjugateRhs)
77 alpha = conj(alpha);
78
79 enum { AllAligned = 0, EvenAligned, FirstAligned, NoneAligned };
80 const Index columnsAtOnce = 4;
81 const Index peels = 2;
82 const Index LhsPacketAlignedMask = LhsPacketSize-1;
83 const Index ResPacketAlignedMask = ResPacketSize-1;
84 const Index size = rows;
85
86 // How many coeffs of the result do we have to skip to be aligned.
87 // Here we assume data are at least aligned on the base scalar type.
88 Index alignedStart = internal::first_aligned(res,size);
89 Index alignedSize = ResPacketSize>1 ? alignedStart + ((size-alignedStart) & ~ResPacketAlignedMask) : 0;
90 const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
91
92 const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
93 Index alignmentPattern = alignmentStep==0 ? AllAligned
94 : alignmentStep==(LhsPacketSize/2) ? EvenAligned
95 : FirstAligned;
96
97 // we cannot assume the first element is aligned because of sub-matrices
98 const Index lhsAlignmentOffset = internal::first_aligned(lhs,size);
99
100 // find how many columns do we have to skip to be aligned with the result (if possible)
101 Index skipColumns = 0;
102 // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
103 if( (size_t(lhs)%sizeof(LhsScalar)) || (size_t(res)%sizeof(ResScalar)) )
104 {
105 alignedSize = 0;
106 alignedStart = 0;
107 }
108 else if (LhsPacketSize>1)
109 {
110 eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || size<LhsPacketSize);
111
112 while (skipColumns<LhsPacketSize &&
113 alignedStart != ((lhsAlignmentOffset + alignmentStep*skipColumns)%LhsPacketSize))
114 ++skipColumns;
115 if (skipColumns==LhsPacketSize)
116 {
117 // nothing can be aligned, no need to skip any column
118 alignmentPattern = NoneAligned;
119 skipColumns = 0;
120 }
121 else
122 {
123 skipColumns = (std::min)(skipColumns,cols);
124 // note that the skiped columns are processed later.
125 }
126
127 eigen_internal_assert( (alignmentPattern==NoneAligned)
128 || (skipColumns + columnsAtOnce >= cols)
129 || LhsPacketSize > size
130 || (size_t(lhs+alignedStart+lhsStride*skipColumns)%sizeof(LhsPacket))==0);
131 }
132 else if(Vectorizable)
133 {
134 alignedStart = 0;
135 alignedSize = size;
136 alignmentPattern = AllAligned;
137 }
138
139 Index offset1 = (FirstAligned && alignmentStep==1?3:1);
140 Index offset3 = (FirstAligned && alignmentStep==1?1:3);
141
142 Index columnBound = ((cols-skipColumns)/columnsAtOnce)*columnsAtOnce + skipColumns;
143 for (Index i=skipColumns; i<columnBound; i+=columnsAtOnce)
144 {
145 RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[i*rhsIncr]),
146 ptmp1 = pset1<RhsPacket>(alpha*rhs[(i+offset1)*rhsIncr]),
147 ptmp2 = pset1<RhsPacket>(alpha*rhs[(i+2)*rhsIncr]),
148 ptmp3 = pset1<RhsPacket>(alpha*rhs[(i+offset3)*rhsIncr]);
149
150 // this helps a lot generating better binary code
151 const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
152 *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
153
154 if (Vectorizable)
155 {
156 /* explicit vectorization */
157 // process initial unaligned coeffs
158 for (Index j=0; j<alignedStart; ++j)
159 {
160 res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
161 res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
162 res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
163 res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
164 }
165
166 if (alignedSize>alignedStart)
167 {
168 switch(alignmentPattern)
169 {
170 case AllAligned:
171 for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
172 _EIGEN_ACCUMULATE_PACKETS(d,d,d);
173 break;
174 case EvenAligned:
175 for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
176 _EIGEN_ACCUMULATE_PACKETS(d,du,d);
177 break;
178 case FirstAligned:
179 {
180 Index j = alignedStart;
181 if(peels>1)
182 {
183 LhsPacket A00, A01, A02, A03, A10, A11, A12, A13;
184 ResPacket T0, T1;
185
186 A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
187 A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
188 A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
189
190 for (; j<peeledSize; j+=peels*ResPacketSize)
191 {
192 A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
193 A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
194 A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
195
196 A00 = pload<LhsPacket>(&lhs0[j]);
197 A10 = pload<LhsPacket>(&lhs0[j+LhsPacketSize]);
198 T0 = pcj.pmadd(A00, ptmp0, pload<ResPacket>(&res[j]));
199 T1 = pcj.pmadd(A10, ptmp0, pload<ResPacket>(&res[j+ResPacketSize]));
200
201 T0 = pcj.pmadd(A01, ptmp1, T0);
202 A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
203 T0 = pcj.pmadd(A02, ptmp2, T0);
204 A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
205 T0 = pcj.pmadd(A03, ptmp3, T0);
206 pstore(&res[j],T0);
207 A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
208 T1 = pcj.pmadd(A11, ptmp1, T1);
209 T1 = pcj.pmadd(A12, ptmp2, T1);
210 T1 = pcj.pmadd(A13, ptmp3, T1);
211 pstore(&res[j+ResPacketSize],T1);
212 }
213 }
214 for (; j<alignedSize; j+=ResPacketSize)
215 _EIGEN_ACCUMULATE_PACKETS(d,du,du);
216 break;
217 }
218 default:
219 for (Index j = alignedStart; j<alignedSize; j+=ResPacketSize)
220 _EIGEN_ACCUMULATE_PACKETS(du,du,du);
221 break;
222 }
223 }
224 } // end explicit vectorization
225
226 /* process remaining coeffs (or all if there is no explicit vectorization) */
227 for (Index j=alignedSize; j<size; ++j)
228 {
229 res[j] = cj.pmadd(lhs0[j], pfirst(ptmp0), res[j]);
230 res[j] = cj.pmadd(lhs1[j], pfirst(ptmp1), res[j]);
231 res[j] = cj.pmadd(lhs2[j], pfirst(ptmp2), res[j]);
232 res[j] = cj.pmadd(lhs3[j], pfirst(ptmp3), res[j]);
233 }
234 }
235
236 // process remaining first and last columns (at most columnsAtOnce-1)
237 Index end = cols;
238 Index start = columnBound;
239 do
240 {
241 for (Index k=start; k<end; ++k)
242 {
243 RhsPacket ptmp0 = pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
244 const LhsScalar* lhs0 = lhs + k*lhsStride;
245
246 if (Vectorizable)
247 {
248 /* explicit vectorization */
249 // process first unaligned result's coeffs
250 for (Index j=0; j<alignedStart; ++j)
251 res[j] += cj.pmul(lhs0[j], pfirst(ptmp0));
252 // process aligned result's coeffs
253 if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
254 for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
255 pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
256 else
257 for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
258 pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
259 }
260
261 // process remaining scalars (or all if no explicit vectorization)
262 for (Index i=alignedSize; i<size; ++i)
263 res[i] += cj.pmul(lhs0[i], pfirst(ptmp0));
264 }
265 if (skipColumns)
266 {
267 start = 0;
268 end = skipColumns;
269 skipColumns = 0;
270 }
271 else
272 break;
273 } while(Vectorizable);
274 #undef _EIGEN_ACCUMULATE_PACKETS
275}
276};
277
278/* Optimized row-major matrix * vector product:
279 * This algorithm processes 4 rows at onces that allows to both reduce
280 * the number of load/stores of the result by a factor 4 and to reduce
281 * the instruction dependency. Moreover, we know that all bands have the
282 * same alignment pattern.
283 *
284 * Mixing type logic:
285 * - alpha is always a complex (or converted to a complex)
286 * - no vectorization
287 */
288template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
289struct general_matrix_vector_product<Index,LhsScalar,RowMajor,ConjugateLhs,RhsScalar,ConjugateRhs,Version>
290{
291typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
292
293enum {
294 Vectorizable = packet_traits<LhsScalar>::Vectorizable && packet_traits<RhsScalar>::Vectorizable
295 && int(packet_traits<LhsScalar>::size)==int(packet_traits<RhsScalar>::size),
296 LhsPacketSize = Vectorizable ? packet_traits<LhsScalar>::size : 1,
297 RhsPacketSize = Vectorizable ? packet_traits<RhsScalar>::size : 1,
298 ResPacketSize = Vectorizable ? packet_traits<ResScalar>::size : 1
299};
300
301typedef typename packet_traits<LhsScalar>::type _LhsPacket;
302typedef typename packet_traits<RhsScalar>::type _RhsPacket;
303typedef typename packet_traits<ResScalar>::type _ResPacket;
304
305typedef typename conditional<Vectorizable,_LhsPacket,LhsScalar>::type LhsPacket;
306typedef typename conditional<Vectorizable,_RhsPacket,RhsScalar>::type RhsPacket;
307typedef typename conditional<Vectorizable,_ResPacket,ResScalar>::type ResPacket;
308
309EIGEN_DONT_INLINE static void run(
310 Index rows, Index cols,
311 const LhsScalar* lhs, Index lhsStride,
312 const RhsScalar* rhs, Index rhsIncr,
313 ResScalar* res, Index resIncr,
314 ResScalar alpha)
315{
316 EIGEN_UNUSED_VARIABLE(rhsIncr);
317 eigen_internal_assert(rhsIncr==1);
318 #ifdef _EIGEN_ACCUMULATE_PACKETS
319 #error _EIGEN_ACCUMULATE_PACKETS has already been defined
320 #endif
321
322 #define _EIGEN_ACCUMULATE_PACKETS(A0,A13,A2) {\
323 RhsPacket b = pload<RhsPacket>(&rhs[j]); \
324 ptmp0 = pcj.pmadd(EIGEN_CAT(ploa,A0) <LhsPacket>(&lhs0[j]), b, ptmp0); \
325 ptmp1 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs1[j]), b, ptmp1); \
326 ptmp2 = pcj.pmadd(EIGEN_CAT(ploa,A2) <LhsPacket>(&lhs2[j]), b, ptmp2); \
327 ptmp3 = pcj.pmadd(EIGEN_CAT(ploa,A13)<LhsPacket>(&lhs3[j]), b, ptmp3); }
328
329 conj_helper<LhsScalar,RhsScalar,ConjugateLhs,ConjugateRhs> cj;
330 conj_helper<LhsPacket,RhsPacket,ConjugateLhs,ConjugateRhs> pcj;
331
332 enum { AllAligned=0, EvenAligned=1, FirstAligned=2, NoneAligned=3 };
333 const Index rowsAtOnce = 4;
334 const Index peels = 2;
335 const Index RhsPacketAlignedMask = RhsPacketSize-1;
336 const Index LhsPacketAlignedMask = LhsPacketSize-1;
337 const Index depth = cols;
338
339 // How many coeffs of the result do we have to skip to be aligned.
340 // Here we assume data are at least aligned on the base scalar type
341 // if that's not the case then vectorization is discarded, see below.
342 Index alignedStart = internal::first_aligned(rhs, depth);
343 Index alignedSize = RhsPacketSize>1 ? alignedStart + ((depth-alignedStart) & ~RhsPacketAlignedMask) : 0;
344 const Index peeledSize = alignedSize - RhsPacketSize*peels - RhsPacketSize + 1;
345
346 const Index alignmentStep = LhsPacketSize>1 ? (LhsPacketSize - lhsStride % LhsPacketSize) & LhsPacketAlignedMask : 0;
347 Index alignmentPattern = alignmentStep==0 ? AllAligned
348 : alignmentStep==(LhsPacketSize/2) ? EvenAligned
349 : FirstAligned;
350
351 // we cannot assume the first element is aligned because of sub-matrices
352 const Index lhsAlignmentOffset = internal::first_aligned(lhs,depth);
353
354 // find how many rows do we have to skip to be aligned with rhs (if possible)
355 Index skipRows = 0;
356 // if the data cannot be aligned (TODO add some compile time tests when possible, e.g. for floats)
357 if( (sizeof(LhsScalar)!=sizeof(RhsScalar)) || (size_t(lhs)%sizeof(LhsScalar)) || (size_t(rhs)%sizeof(RhsScalar)) )
358 {
359 alignedSize = 0;
360 alignedStart = 0;
361 }
362 else if (LhsPacketSize>1)
363 {
364 eigen_internal_assert(size_t(lhs+lhsAlignmentOffset)%sizeof(LhsPacket)==0 || depth<LhsPacketSize);
365
366 while (skipRows<LhsPacketSize &&
367 alignedStart != ((lhsAlignmentOffset + alignmentStep*skipRows)%LhsPacketSize))
368 ++skipRows;
369 if (skipRows==LhsPacketSize)
370 {
371 // nothing can be aligned, no need to skip any column
372 alignmentPattern = NoneAligned;
373 skipRows = 0;
374 }
375 else
376 {
377 skipRows = (std::min)(skipRows,Index(rows));
378 // note that the skiped columns are processed later.
379 }
380 eigen_internal_assert( alignmentPattern==NoneAligned
381 || LhsPacketSize==1
382 || (skipRows + rowsAtOnce >= rows)
383 || LhsPacketSize > depth
384 || (size_t(lhs+alignedStart+lhsStride*skipRows)%sizeof(LhsPacket))==0);
385 }
386 else if(Vectorizable)
387 {
388 alignedStart = 0;
389 alignedSize = depth;
390 alignmentPattern = AllAligned;
391 }
392
393 Index offset1 = (FirstAligned && alignmentStep==1?3:1);
394 Index offset3 = (FirstAligned && alignmentStep==1?1:3);
395
396 Index rowBound = ((rows-skipRows)/rowsAtOnce)*rowsAtOnce + skipRows;
397 for (Index i=skipRows; i<rowBound; i+=rowsAtOnce)
398 {
399 EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
400 ResScalar tmp1 = ResScalar(0), tmp2 = ResScalar(0), tmp3 = ResScalar(0);
401
402 // this helps the compiler generating good binary code
403 const LhsScalar *lhs0 = lhs + i*lhsStride, *lhs1 = lhs + (i+offset1)*lhsStride,
404 *lhs2 = lhs + (i+2)*lhsStride, *lhs3 = lhs + (i+offset3)*lhsStride;
405
406 if (Vectorizable)
407 {
408 /* explicit vectorization */
409 ResPacket ptmp0 = pset1<ResPacket>(ResScalar(0)), ptmp1 = pset1<ResPacket>(ResScalar(0)),
410 ptmp2 = pset1<ResPacket>(ResScalar(0)), ptmp3 = pset1<ResPacket>(ResScalar(0));
411
412 // process initial unaligned coeffs
413 // FIXME this loop get vectorized by the compiler !
414 for (Index j=0; j<alignedStart; ++j)
415 {
416 RhsScalar b = rhs[j];
417 tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
418 tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
419 }
420
421 if (alignedSize>alignedStart)
422 {
423 switch(alignmentPattern)
424 {
425 case AllAligned:
426 for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
427 _EIGEN_ACCUMULATE_PACKETS(d,d,d);
428 break;
429 case EvenAligned:
430 for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
431 _EIGEN_ACCUMULATE_PACKETS(d,du,d);
432 break;
433 case FirstAligned:
434 {
435 Index j = alignedStart;
436 if (peels>1)
437 {
438 /* Here we proccess 4 rows with with two peeled iterations to hide
439 * the overhead of unaligned loads. Moreover unaligned loads are handled
440 * using special shift/move operations between the two aligned packets
441 * overlaping the desired unaligned packet. This is *much* more efficient
442 * than basic unaligned loads.
443 */
444 LhsPacket A01, A02, A03, A11, A12, A13;
445 A01 = pload<LhsPacket>(&lhs1[alignedStart-1]);
446 A02 = pload<LhsPacket>(&lhs2[alignedStart-2]);
447 A03 = pload<LhsPacket>(&lhs3[alignedStart-3]);
448
449 for (; j<peeledSize; j+=peels*RhsPacketSize)
450 {
451 RhsPacket b = pload<RhsPacket>(&rhs[j]);
452 A11 = pload<LhsPacket>(&lhs1[j-1+LhsPacketSize]); palign<1>(A01,A11);
453 A12 = pload<LhsPacket>(&lhs2[j-2+LhsPacketSize]); palign<2>(A02,A12);
454 A13 = pload<LhsPacket>(&lhs3[j-3+LhsPacketSize]); palign<3>(A03,A13);
455
456 ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), b, ptmp0);
457 ptmp1 = pcj.pmadd(A01, b, ptmp1);
458 A01 = pload<LhsPacket>(&lhs1[j-1+2*LhsPacketSize]); palign<1>(A11,A01);
459 ptmp2 = pcj.pmadd(A02, b, ptmp2);
460 A02 = pload<LhsPacket>(&lhs2[j-2+2*LhsPacketSize]); palign<2>(A12,A02);
461 ptmp3 = pcj.pmadd(A03, b, ptmp3);
462 A03 = pload<LhsPacket>(&lhs3[j-3+2*LhsPacketSize]); palign<3>(A13,A03);
463
464 b = pload<RhsPacket>(&rhs[j+RhsPacketSize]);
465 ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j+LhsPacketSize]), b, ptmp0);
466 ptmp1 = pcj.pmadd(A11, b, ptmp1);
467 ptmp2 = pcj.pmadd(A12, b, ptmp2);
468 ptmp3 = pcj.pmadd(A13, b, ptmp3);
469 }
470 }
471 for (; j<alignedSize; j+=RhsPacketSize)
472 _EIGEN_ACCUMULATE_PACKETS(d,du,du);
473 break;
474 }
475 default:
476 for (Index j = alignedStart; j<alignedSize; j+=RhsPacketSize)
477 _EIGEN_ACCUMULATE_PACKETS(du,du,du);
478 break;
479 }
480 tmp0 += predux(ptmp0);
481 tmp1 += predux(ptmp1);
482 tmp2 += predux(ptmp2);
483 tmp3 += predux(ptmp3);
484 }
485 } // end explicit vectorization
486
487 // process remaining coeffs (or all if no explicit vectorization)
488 // FIXME this loop get vectorized by the compiler !
489 for (Index j=alignedSize; j<depth; ++j)
490 {
491 RhsScalar b = rhs[j];
492 tmp0 += cj.pmul(lhs0[j],b); tmp1 += cj.pmul(lhs1[j],b);
493 tmp2 += cj.pmul(lhs2[j],b); tmp3 += cj.pmul(lhs3[j],b);
494 }
495 res[i*resIncr] += alpha*tmp0;
496 res[(i+offset1)*resIncr] += alpha*tmp1;
497 res[(i+2)*resIncr] += alpha*tmp2;
498 res[(i+offset3)*resIncr] += alpha*tmp3;
499 }
500
501 // process remaining first and last rows (at most columnsAtOnce-1)
502 Index end = rows;
503 Index start = rowBound;
504 do
505 {
506 for (Index i=start; i<end; ++i)
507 {
508 EIGEN_ALIGN16 ResScalar tmp0 = ResScalar(0);
509 ResPacket ptmp0 = pset1<ResPacket>(tmp0);
510 const LhsScalar* lhs0 = lhs + i*lhsStride;
511 // process first unaligned result's coeffs
512 // FIXME this loop get vectorized by the compiler !
513 for (Index j=0; j<alignedStart; ++j)
514 tmp0 += cj.pmul(lhs0[j], rhs[j]);
515
516 if (alignedSize>alignedStart)
517 {
518 // process aligned rhs coeffs
519 if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
520 for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
521 ptmp0 = pcj.pmadd(pload<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
522 else
523 for (Index j = alignedStart;j<alignedSize;j+=RhsPacketSize)
524 ptmp0 = pcj.pmadd(ploadu<LhsPacket>(&lhs0[j]), pload<RhsPacket>(&rhs[j]), ptmp0);
525 tmp0 += predux(ptmp0);
526 }
527
528 // process remaining scalars
529 // FIXME this loop get vectorized by the compiler !
530 for (Index j=alignedSize; j<depth; ++j)
531 tmp0 += cj.pmul(lhs0[j], rhs[j]);
532 res[i*resIncr] += alpha*tmp0;
533 }
534 if (skipRows)
535 {
536 start = 0;
537 end = skipRows;
538 skipRows = 0;
539 }
540 else
541 break;
542 } while(Vectorizable);
543
544 #undef _EIGEN_ACCUMULATE_PACKETS
545}
546};
547
548} // end namespace internal
549
550} // end namespace Eigen
551
552#endif // EIGEN_GENERAL_MATRIX_VECTOR_H
@ RowMajor
Definition Constants.h:259
@ ColMajor
Definition Constants.h:257
Definition LDLT.h:18