GeneralMatrixMatrix.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
11#define EIGEN_GENERAL_MATRIX_MATRIX_H
12
13namespace Eigen {
14
15namespace internal {
16
17template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
18
19/* Specialization for a row-major destination matrix => simple transposition of the product */
20template<
21 typename Index,
22 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
23 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
24struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
25{
26 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
27 static EIGEN_STRONG_INLINE void run(
28 Index rows, Index cols, Index depth,
29 const LhsScalar* lhs, Index lhsStride,
30 const RhsScalar* rhs, Index rhsStride,
31 ResScalar* res, Index resStride,
32 ResScalar alpha,
33 level3_blocking<RhsScalar,LhsScalar>& blocking,
34 GemmParallelInfo<Index>* info = 0)
35 {
36 // transpose the product such that the result is column major
37 general_matrix_matrix_product<Index,
38 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
39 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
41 ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
42 }
43};
44
45/* Specialization for a col-major destination matrix
46 * => Blocking algorithm following Goto's paper */
47template<
48 typename Index,
49 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
50 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
51struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
52{
53typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
54static void run(Index rows, Index cols, Index depth,
55 const LhsScalar* _lhs, Index lhsStride,
56 const RhsScalar* _rhs, Index rhsStride,
57 ResScalar* res, Index resStride,
58 ResScalar alpha,
59 level3_blocking<LhsScalar,RhsScalar>& blocking,
60 GemmParallelInfo<Index>* info = 0)
61{
62 const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
63 const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
64
65 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
66
67 Index kc = blocking.kc(); // cache block size along the K direction
68 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
69 //Index nc = blocking.nc(); // cache block size along the N direction
70
71 gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
72 gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
73 gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
74
75#ifdef EIGEN_HAS_OPENMP
76 if(info)
77 {
78 // this is the parallel version!
79 Index tid = omp_get_thread_num();
80 Index threads = omp_get_num_threads();
81
82 std::size_t sizeA = kc*mc;
83 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
84 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
85 ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
86
87 RhsScalar* blockB = blocking.blockB();
88 eigen_internal_assert(blockB!=0);
89
90 // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
91 for(Index k=0; k<depth; k+=kc)
92 {
93 const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
94
95 // In order to reduce the chance that a thread has to wait for the other,
96 // let's start by packing A'.
97 pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
98
99 // Pack B_k to B' in a parallel fashion:
100 // each thread packs the sub block B_k,j to B'_j where j is the thread id.
101
102 // However, before copying to B'_j, we have to make sure that no other thread is still using it,
103 // i.e., we test that info[tid].users equals 0.
104 // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
105 while(info[tid].users!=0) {}
106 info[tid].users += threads;
107
108 pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
109
110 // Notify the other threads that the part B'_j is ready to go.
111 info[tid].sync = k;
112
113 // Computes C_i += A' * B' per B'_j
114 for(Index shift=0; shift<threads; ++shift)
115 {
116 Index j = (tid+shift)%threads;
117
118 // At this point we have to make sure that B'_j has been updated by the thread j,
119 // we use testAndSetOrdered to mimic a volatile access.
120 // However, no need to wait for the B' part which has been updated by the current thread!
121 if(shift>0)
122 while(info[j].sync!=k) {}
123
124 gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
125 }
126
127 // Then keep going as usual with the remaining A'
128 for(Index i=mc; i<rows; i+=mc)
129 {
130 const Index actual_mc = (std::min)(i+mc,rows)-i;
131
132 // pack A_i,k to A'
133 pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
134
135 // C_i += A' * B'
136 gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
137 }
138
139 // Release all the sub blocks B'_j of B' for the current thread,
140 // i.e., we simply decrement the number of users by 1
141 for(Index j=0; j<threads; ++j)
142 #pragma omp atomic
143 --(info[j].users);
144 }
145 }
146 else
147#endif // EIGEN_HAS_OPENMP
148 {
149 EIGEN_UNUSED_VARIABLE(info);
150
151 // this is the sequential version!
152 std::size_t sizeA = kc*mc;
153 std::size_t sizeB = kc*cols;
154 std::size_t sizeW = kc*Traits::WorkSpaceFactor;
155
156 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
157 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
158 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
159
160 // For each horizontal panel of the rhs, and corresponding panel of the lhs...
161 // (==GEMM_VAR1)
162 for(Index k2=0; k2<depth; k2+=kc)
163 {
164 const Index actual_kc = (std::min)(k2+kc,depth)-k2;
165
166 // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
167 // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
168 // Note that this panel will be read as many times as the number of blocks in the lhs's
169 // vertical panel which is, in practice, a very low number.
170 pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
171
172
173 // For each mc x kc block of the lhs's vertical panel...
174 // (==GEPP_VAR1)
175 for(Index i2=0; i2<rows; i2+=mc)
176 {
177 const Index actual_mc = (std::min)(i2+mc,rows)-i2;
178
179 // We pack the lhs's block into a sequential chunk of memory (L1 caching)
180 // Note that this block will be read a very high number of times, which is equal to the number of
181 // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
182 pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
183
184 // Everything is packed, we can now call the block * panel kernel:
185 gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
186
187 }
188 }
189 }
190}
191
192};
193
194/*********************************************************************************
195* Specialization of GeneralProduct<> for "large" GEMM, i.e.,
196* implementation of the high level wrapper to general_matrix_matrix_product
197**********************************************************************************/
198
199template<typename Lhs, typename Rhs>
200struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
201 : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
202{};
203
204template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
205struct gemm_functor
206{
207 gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, Scalar actualAlpha,
208 BlockingType& blocking)
209 : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
210 {}
211
212 void initParallelSession() const
213 {
214 m_blocking.allocateB();
215 }
216
217 void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
218 {
219 if(cols==-1)
220 cols = m_rhs.cols();
221
222 Gemm::run(rows, cols, m_lhs.cols(),
223 /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
224 /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
225 (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
226 m_actualAlpha, m_blocking, info);
227 }
228
229 protected:
230 const Lhs& m_lhs;
231 const Rhs& m_rhs;
232 Dest& m_dest;
233 Scalar m_actualAlpha;
234 BlockingType& m_blocking;
235};
236
237template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
238bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
239
240template<typename _LhsScalar, typename _RhsScalar>
241class level3_blocking
242{
243 typedef _LhsScalar LhsScalar;
244 typedef _RhsScalar RhsScalar;
245
246 protected:
247 LhsScalar* m_blockA;
248 RhsScalar* m_blockB;
249 RhsScalar* m_blockW;
250
251 DenseIndex m_mc;
252 DenseIndex m_nc;
253 DenseIndex m_kc;
254
255 public:
256
257 level3_blocking()
258 : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
259 {}
260
261 inline DenseIndex mc() const { return m_mc; }
262 inline DenseIndex nc() const { return m_nc; }
263 inline DenseIndex kc() const { return m_kc; }
264
265 inline LhsScalar* blockA() { return m_blockA; }
266 inline RhsScalar* blockB() { return m_blockB; }
267 inline RhsScalar* blockW() { return m_blockW; }
268};
269
270template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
271class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
272 : public level3_blocking<
273 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
274 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
275{
276 enum {
277 Transpose = StorageOrder==RowMajor,
278 ActualRows = Transpose ? MaxCols : MaxRows,
279 ActualCols = Transpose ? MaxRows : MaxCols
280 };
281 typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
282 typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
283 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
284 enum {
285 SizeA = ActualRows * MaxDepth,
286 SizeB = ActualCols * MaxDepth,
287 SizeW = MaxDepth * Traits::WorkSpaceFactor
288 };
289
290 EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
291 EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
292 EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
293
294 public:
295
296 gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
297 {
298 this->m_mc = ActualRows;
299 this->m_nc = ActualCols;
300 this->m_kc = MaxDepth;
301 this->m_blockA = m_staticA;
302 this->m_blockB = m_staticB;
303 this->m_blockW = m_staticW;
304 }
305
306 inline void allocateA() {}
307 inline void allocateB() {}
308 inline void allocateW() {}
309 inline void allocateAll() {}
310};
311
312template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
313class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
314 : public level3_blocking<
315 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
316 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
317{
318 enum {
319 Transpose = StorageOrder==RowMajor
320 };
321 typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
322 typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
323 typedef gebp_traits<LhsScalar,RhsScalar> Traits;
324
325 DenseIndex m_sizeA;
326 DenseIndex m_sizeB;
327 DenseIndex m_sizeW;
328
329 public:
330
331 gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
332 {
333 this->m_mc = Transpose ? cols : rows;
334 this->m_nc = Transpose ? rows : cols;
335 this->m_kc = depth;
336
337 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
338 m_sizeA = this->m_mc * this->m_kc;
339 m_sizeB = this->m_kc * this->m_nc;
340 m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
341 }
342
343 void allocateA()
344 {
345 if(this->m_blockA==0)
346 this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
347 }
348
349 void allocateB()
350 {
351 if(this->m_blockB==0)
352 this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
353 }
354
355 void allocateW()
356 {
357 if(this->m_blockW==0)
358 this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
359 }
360
361 void allocateAll()
362 {
363 allocateA();
364 allocateB();
365 allocateW();
366 }
367
368 ~gemm_blocking_space()
369 {
370 aligned_delete(this->m_blockA, m_sizeA);
371 aligned_delete(this->m_blockB, m_sizeB);
372 aligned_delete(this->m_blockW, m_sizeW);
373 }
374};
375
376} // end namespace internal
377
378template<typename Lhs, typename Rhs>
379class GeneralProduct<Lhs, Rhs, GemmProduct>
380 : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
381{
382 enum {
383 MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
384 };
385 public:
386 EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
387
388 typedef typename Lhs::Scalar LhsScalar;
389 typedef typename Rhs::Scalar RhsScalar;
390 typedef Scalar ResScalar;
391
392 GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
393 {
394 typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
395 EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
396 }
397
398 template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
399 {
400 eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
401
402 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
403 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
404
405 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
406 * RhsBlasTraits::extractScalarFactor(m_rhs);
407
408 typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
409 Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
410
411 typedef internal::gemm_functor<
412 Scalar, Index,
413 internal::general_matrix_matrix_product<
414 Index,
415 LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
416 RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
417 (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
418 _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
419
420 BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
421
422 internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
423 }
424};
425
426} // end namespace Eigen
427
428#endif // EIGEN_GENERAL_MATRIX_MATRIX_H
Expression of the product of two general matrices or vectors.
Definition GeneralProduct.h:36
@ RowMajor
Definition Constants.h:259
@ ColMajor
Definition Constants.h:257
const unsigned int RowMajorBit
Definition Constants.h:48
Definition LDLT.h:18
void computeProductBlockingSizes(SizeType &k, SizeType &m, SizeType &n)
Computes the blocking parameters for a m x k times k x n matrix product.
Definition GeneralBlockPanelKernel.h:73