Amd.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10/*
11
12NOTE: this routine has been adapted from the CSparse library:
13
14Copyright (c) 2006, Timothy A. Davis.
15http://www.cise.ufl.edu/research/sparse/CSparse
16
17CSparse is free software; you can redistribute it and/or
18modify it under the terms of the GNU Lesser General Public
19License as published by the Free Software Foundation; either
20version 2.1 of the License, or (at your option) any later version.
21
22CSparse is distributed in the hope that it will be useful,
23but WITHOUT ANY WARRANTY; without even the implied warranty of
24MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25Lesser General Public License for more details.
26
27You should have received a copy of the GNU Lesser General Public
28License along with this Module; if not, write to the Free Software
29Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30
31*/
32
33#include "../Core/util/NonMPL2.h"
34
35#ifndef EIGEN_SPARSE_AMD_H
36#define EIGEN_SPARSE_AMD_H
37
38namespace Eigen {
39
40namespace internal {
41
42template<typename T> inline T amd_flip(const T& i) { return -i-2; }
43template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
44template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
45template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
46
47/* clear w */
48template<typename Index>
49static int cs_wclear (Index mark, Index lemax, Index *w, Index n)
50{
51 Index k;
52 if(mark < 2 || (mark + lemax < 0))
53 {
54 for(k = 0; k < n; k++)
55 if(w[k] != 0)
56 w[k] = 1;
57 mark = 2;
58 }
59 return (mark); /* at this point, w[0..n-1] < mark holds */
60}
61
62/* depth-first search and postorder of a tree rooted at node j */
63template<typename Index>
64Index cs_tdfs(Index j, Index k, Index *head, const Index *next, Index *post, Index *stack)
65{
66 int i, p, top = 0;
67 if(!head || !next || !post || !stack) return (-1); /* check inputs */
68 stack[0] = j; /* place j on the stack */
69 while (top >= 0) /* while (stack is not empty) */
70 {
71 p = stack[top]; /* p = top of stack */
72 i = head[p]; /* i = youngest child of p */
73 if(i == -1)
74 {
75 top--; /* p has no unordered children left */
76 post[k++] = p; /* node p is the kth postordered node */
77 }
78 else
79 {
80 head[p] = next[i]; /* remove i from children of p */
81 stack[++top] = i; /* start dfs on child node i */
82 }
83 }
84 return k;
85}
86
87
93template<typename Scalar, typename Index>
94void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,Index>& C, PermutationMatrix<Dynamic,Dynamic,Index>& perm)
95{
96 using std::sqrt;
97 typedef SparseMatrix<Scalar,ColMajor,Index> CCS;
98
99 int d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
100 k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
101 ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t;
102 unsigned int h;
103
104 Index n = C.cols();
105 dense = std::max<Index> (16, Index(10 * sqrt(double(n)))); /* find dense threshold */
106 dense = std::min<Index> (n-2, dense);
107
108 Index cnz = C.nonZeros();
109 perm.resize(n+1);
110 t = cnz + cnz/5 + 2*n; /* add elbow room to C */
111 C.resizeNonZeros(t);
112
113 Index* W = new Index[8*(n+1)]; /* get workspace */
114 Index* len = W;
115 Index* nv = W + (n+1);
116 Index* next = W + 2*(n+1);
117 Index* head = W + 3*(n+1);
118 Index* elen = W + 4*(n+1);
119 Index* degree = W + 5*(n+1);
120 Index* w = W + 6*(n+1);
121 Index* hhead = W + 7*(n+1);
122 Index* last = perm.indices().data(); /* use P as workspace for last */
123
124 /* --- Initialize quotient graph ---------------------------------------- */
125 Index* Cp = C.outerIndexPtr();
126 Index* Ci = C.innerIndexPtr();
127 for(k = 0; k < n; k++)
128 len[k] = Cp[k+1] - Cp[k];
129 len[n] = 0;
130 nzmax = t;
131
132 for(i = 0; i <= n; i++)
133 {
134 head[i] = -1; // degree list i is empty
135 last[i] = -1;
136 next[i] = -1;
137 hhead[i] = -1; // hash list i is empty
138 nv[i] = 1; // node i is just one node
139 w[i] = 1; // node i is alive
140 elen[i] = 0; // Ek of node i is empty
141 degree[i] = len[i]; // degree of node i
142 }
143 mark = internal::cs_wclear<Index>(0, 0, w, n); /* clear w */
144 elen[n] = -2; /* n is a dead element */
145 Cp[n] = -1; /* n is a root of assembly tree */
146 w[n] = 0; /* n is a dead element */
147
148 /* --- Initialize degree lists ------------------------------------------ */
149 for(i = 0; i < n; i++)
150 {
151 d = degree[i];
152 if(d == 0) /* node i is empty */
153 {
154 elen[i] = -2; /* element i is dead */
155 nel++;
156 Cp[i] = -1; /* i is a root of assembly tree */
157 w[i] = 0;
158 }
159 else if(d > dense) /* node i is dense */
160 {
161 nv[i] = 0; /* absorb i into element n */
162 elen[i] = -1; /* node i is dead */
163 nel++;
164 Cp[i] = amd_flip (n);
165 nv[n]++;
166 }
167 else
168 {
169 if(head[d] != -1) last[head[d]] = i;
170 next[i] = head[d]; /* put node i in degree list d */
171 head[d] = i;
172 }
173 }
174
175 while (nel < n) /* while (selecting pivots) do */
176 {
177 /* --- Select node of minimum approximate degree -------------------- */
178 for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
179 if(next[k] != -1) last[next[k]] = -1;
180 head[mindeg] = next[k]; /* remove k from degree list */
181 elenk = elen[k]; /* elenk = |Ek| */
182 nvk = nv[k]; /* # of nodes k represents */
183 nel += nvk; /* nv[k] nodes of A eliminated */
184
185 /* --- Garbage collection ------------------------------------------- */
186 if(elenk > 0 && cnz + mindeg >= nzmax)
187 {
188 for(j = 0; j < n; j++)
189 {
190 if((p = Cp[j]) >= 0) /* j is a live node or element */
191 {
192 Cp[j] = Ci[p]; /* save first entry of object */
193 Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */
194 }
195 }
196 for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
197 {
198 if((j = amd_flip (Ci[p++])) >= 0) /* found object j */
199 {
200 Ci[q] = Cp[j]; /* restore first entry of object */
201 Cp[j] = q++; /* new pointer to object j */
202 for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
203 }
204 }
205 cnz = q; /* Ci[cnz...nzmax-1] now free */
206 }
207
208 /* --- Construct new element ---------------------------------------- */
209 dk = 0;
210 nv[k] = -nvk; /* flag k as in Lk */
211 p = Cp[k];
212 pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
213 pk2 = pk1;
214 for(k1 = 1; k1 <= elenk + 1; k1++)
215 {
216 if(k1 > elenk)
217 {
218 e = k; /* search the nodes in k */
219 pj = p; /* list of nodes starts at Ci[pj]*/
220 ln = len[k] - elenk; /* length of list of nodes in k */
221 }
222 else
223 {
224 e = Ci[p++]; /* search the nodes in e */
225 pj = Cp[e];
226 ln = len[e]; /* length of list of nodes in e */
227 }
228 for(k2 = 1; k2 <= ln; k2++)
229 {
230 i = Ci[pj++];
231 if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
232 dk += nvi; /* degree[Lk] += size of node i */
233 nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
234 Ci[pk2++] = i; /* place i in Lk */
235 if(next[i] != -1) last[next[i]] = last[i];
236 if(last[i] != -1) /* remove i from degree list */
237 {
238 next[last[i]] = next[i];
239 }
240 else
241 {
242 head[degree[i]] = next[i];
243 }
244 }
245 if(e != k)
246 {
247 Cp[e] = amd_flip (k); /* absorb e into k */
248 w[e] = 0; /* e is now a dead element */
249 }
250 }
251 if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
252 degree[k] = dk; /* external degree of k - |Lk\i| */
253 Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
254 len[k] = pk2 - pk1;
255 elen[k] = -2; /* k is now an element */
256
257 /* --- Find set differences ----------------------------------------- */
258 mark = internal::cs_wclear<Index>(mark, lemax, w, n); /* clear w if necessary */
259 for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
260 {
261 i = Ci[pk];
262 if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
263 nvi = -nv[i]; /* nv[i] was negated */
264 wnvi = mark - nvi;
265 for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
266 {
267 e = Ci[p];
268 if(w[e] >= mark)
269 {
270 w[e] -= nvi; /* decrement |Le\Lk| */
271 }
272 else if(w[e] != 0) /* ensure e is a live element */
273 {
274 w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
275 }
276 }
277 }
278
279 /* --- Degree update ------------------------------------------------ */
280 for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
281 {
282 i = Ci[pk]; /* consider node i in Lk */
283 p1 = Cp[i];
284 p2 = p1 + elen[i] - 1;
285 pn = p1;
286 for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
287 {
288 e = Ci[p];
289 if(w[e] != 0) /* e is an unabsorbed element */
290 {
291 dext = w[e] - mark; /* dext = |Le\Lk| */
292 if(dext > 0)
293 {
294 d += dext; /* sum up the set differences */
295 Ci[pn++] = e; /* keep e in Ei */
296 h += e; /* compute the hash of node i */
297 }
298 else
299 {
300 Cp[e] = amd_flip (k); /* aggressive absorb. e->k */
301 w[e] = 0; /* e is a dead element */
302 }
303 }
304 }
305 elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
306 p3 = pn;
307 p4 = p1 + len[i];
308 for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
309 {
310 j = Ci[p];
311 if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
312 d += nvj; /* degree(i) += |j| */
313 Ci[pn++] = j; /* place j in node list of i */
314 h += j; /* compute hash for node i */
315 }
316 if(d == 0) /* check for mass elimination */
317 {
318 Cp[i] = amd_flip (k); /* absorb i into k */
319 nvi = -nv[i];
320 dk -= nvi; /* |Lk| -= |i| */
321 nvk += nvi; /* |k| += nv[i] */
322 nel += nvi;
323 nv[i] = 0;
324 elen[i] = -1; /* node i is dead */
325 }
326 else
327 {
328 degree[i] = std::min<Index> (degree[i], d); /* update degree(i) */
329 Ci[pn] = Ci[p3]; /* move first node to end */
330 Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
331 Ci[p1] = k; /* add k as 1st element in of Ei */
332 len[i] = pn - p1 + 1; /* new len of adj. list of node i */
333 h %= n; /* finalize hash of i */
334 next[i] = hhead[h]; /* place i in hash bucket */
335 hhead[h] = i;
336 last[i] = h; /* save hash of i in last[i] */
337 }
338 } /* scan2 is done */
339 degree[k] = dk; /* finalize |Lk| */
340 lemax = std::max<Index>(lemax, dk);
341 mark = internal::cs_wclear<Index>(mark+lemax, lemax, w, n); /* clear w */
342
343 /* --- Supernode detection ------------------------------------------ */
344 for(pk = pk1; pk < pk2; pk++)
345 {
346 i = Ci[pk];
347 if(nv[i] >= 0) continue; /* skip if i is dead */
348 h = last[i]; /* scan hash bucket of node i */
349 i = hhead[h];
350 hhead[h] = -1; /* hash bucket will be empty */
351 for(; i != -1 && next[i] != -1; i = next[i], mark++)
352 {
353 ln = len[i];
354 eln = elen[i];
355 for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
356 jlast = i;
357 for(j = next[i]; j != -1; ) /* compare i with all j */
358 {
359 ok = (len[j] == ln) && (elen[j] == eln);
360 for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
361 {
362 if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
363 }
364 if(ok) /* i and j are identical */
365 {
366 Cp[j] = amd_flip (i); /* absorb j into i */
367 nv[i] += nv[j];
368 nv[j] = 0;
369 elen[j] = -1; /* node j is dead */
370 j = next[j]; /* delete j from hash bucket */
371 next[jlast] = j;
372 }
373 else
374 {
375 jlast = j; /* j and i are different */
376 j = next[j];
377 }
378 }
379 }
380 }
381
382 /* --- Finalize new element------------------------------------------ */
383 for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
384 {
385 i = Ci[pk];
386 if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
387 nv[i] = nvi; /* restore nv[i] */
388 d = degree[i] + dk - nvi; /* compute external degree(i) */
389 d = std::min<Index> (d, n - nel - nvi);
390 if(head[d] != -1) last[head[d]] = i;
391 next[i] = head[d]; /* put i back in degree list */
392 last[i] = -1;
393 head[d] = i;
394 mindeg = std::min<Index> (mindeg, d); /* find new minimum degree */
395 degree[i] = d;
396 Ci[p++] = i; /* place i in Lk */
397 }
398 nv[k] = nvk; /* # nodes absorbed into k */
399 if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
400 {
401 Cp[k] = -1; /* k is a root of the tree */
402 w[k] = 0; /* k is now a dead element */
403 }
404 if(elenk != 0) cnz = p; /* free unused space in Lk */
405 }
406
407 /* --- Postordering ----------------------------------------------------- */
408 for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
409 for(j = 0; j <= n; j++) head[j] = -1;
410 for(j = n; j >= 0; j--) /* place unordered nodes in lists */
411 {
412 if(nv[j] > 0) continue; /* skip if j is an element */
413 next[j] = head[Cp[j]]; /* place j in list of its parent */
414 head[Cp[j]] = j;
415 }
416 for(e = n; e >= 0; e--) /* place elements in lists */
417 {
418 if(nv[e] <= 0) continue; /* skip unless e is an element */
419 if(Cp[e] != -1)
420 {
421 next[e] = head[Cp[e]]; /* place e in list of its parent */
422 head[Cp[e]] = e;
423 }
424 }
425 for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
426 {
427 if(Cp[i] == -1) k = internal::cs_tdfs<Index>(i, k, head, next, perm.indices().data(), w);
428 }
429
430 perm.indices().conservativeResize(n);
431
432 delete[] W;
433}
434
435} // namespace internal
436
437} // end namespace Eigen
438
439#endif // EIGEN_SPARSE_AMD_H
Definition LDLT.h:18