Eigen  3.4.90 (git rev 9589cc4e7fd8e4538bedef80dd36c7738977a8be)
 
Loading...
Searching...
No Matches
Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ > Class Template Reference

#include <Eigen/src/SparseCholesky/SimplicialCholesky.h>

Detailed Description

template<typename MatrixType_, int UpLo_, typename Ordering_>
class Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >

A direct sparse LDLT Cholesky factorizations without square root, for symmetric non-hermitian matrices.

This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are symmetric but not hermitian. For real matrices, this is equivalent to the regular LDLT factorization. The factorization allows for solving A.X = B where X and B can be either dense or sparse.

In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization such that the factorized matrix is P A P^-1.

Template Parameters
MatrixType_the type of the sparse matrix A, it must be a SparseMatrix<>
UpLo_the triangular part that will be used for the computations. It can be Lower or Upper. Default is Lower.
Ordering_The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>

This class follows the sparse solver concept .

See also
class SimplicialNonHermitianLLT, SimplicialLDLT, class AMDOrdering, class NaturalOrdering
+ Inheritance diagram for Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >:

Public Member Functions

void analyzePattern (const MatrixType &a)
 
SimplicialNonHermitianLDLTcompute (const MatrixType &matrix)
 
Scalar determinant () const
 
void factorize (const MatrixType &a)
 
const MatrixL matrixL () const
 
const MatrixU matrixU () const
 
 SimplicialNonHermitianLDLT ()
 
 SimplicialNonHermitianLDLT (const MatrixType &matrix)
 
const VectorType vectorD () const
 
- Public Member Functions inherited from Eigen::SimplicialCholeskyBase< SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ > >
ComputationInfo info () const
 Reports whether previous computation was successful.
 
const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & permutationP () const
 
const PermutationMatrix< Dynamic, Dynamic, StorageIndex > & permutationPinv () const
 
SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ > & setShift (const DiagonalScalar &offset, const DiagonalScalar &scale=1)
 
 SimplicialCholeskyBase ()
 
- Public Member Functions inherited from Eigen::SparseSolverBase< SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ > >
const Solve< SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >, Rhs > solve (const MatrixBase< Rhs > &b) const
 
const Solve< SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
 
 SparseSolverBase ()
 

Additional Inherited Members

- Protected Member Functions inherited from Eigen::SimplicialCholeskyBase< SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ > >
void compute (const MatrixType &matrix)
 

Constructor & Destructor Documentation

◆ SimplicialNonHermitianLDLT() [1/2]

template<typename MatrixType_, int UpLo_, typename Ordering_>
Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::SimplicialNonHermitianLDLT ( )
inline

Default constructor

◆ SimplicialNonHermitianLDLT() [2/2]

template<typename MatrixType_, int UpLo_, typename Ordering_>
Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::SimplicialNonHermitianLDLT ( const MatrixType & matrix)
inlineexplicit

Constructs and performs the LLT factorization of matrix

Member Function Documentation

◆ analyzePattern()

template<typename MatrixType_, int UpLo_, typename Ordering_>
void Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::analyzePattern ( const MatrixType & a)
inline

Performs a symbolic decomposition on the sparcity of matrix.

This function is particularly useful when solving for several problems having the same structure.

See also
factorize()

◆ compute()

template<typename MatrixType_, int UpLo_, typename Ordering_>
SimplicialNonHermitianLDLT & Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::compute ( const MatrixType & matrix)
inline

Computes the sparse Cholesky decomposition of matrix

◆ determinant()

template<typename MatrixType_, int UpLo_, typename Ordering_>
Scalar Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::determinant ( ) const
inline
Returns
the determinant of the underlying matrix from the current factorization

◆ factorize()

template<typename MatrixType_, int UpLo_, typename Ordering_>
void Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::factorize ( const MatrixType & a)
inline

Performs a numeric decomposition of matrix

The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.

See also
analyzePattern()

◆ matrixL()

template<typename MatrixType_, int UpLo_, typename Ordering_>
const MatrixL Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::matrixL ( ) const
inline
Returns
an expression of the factor L

◆ matrixU()

template<typename MatrixType_, int UpLo_, typename Ordering_>
const MatrixU Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::matrixU ( ) const
inline
Returns
an expression of the factor U (= L^*)

◆ vectorD()

template<typename MatrixType_, int UpLo_, typename Ordering_>
const VectorType Eigen::SimplicialNonHermitianLDLT< MatrixType_, UpLo_, Ordering_ >::vectorD ( ) const
inline
Returns
a vector expression of the diagonal D

The documentation for this class was generated from the following file: