Eigen  3.4.90 (git rev 9589cc4e7fd8e4538bedef80dd36c7738977a8be)
 
Loading...
Searching...
No Matches
Eigen::PastixLDLT< MatrixType_, UpLo_ > Class Template Reference

#include <Eigen/src/PaStiXSupport/PaStiXSupport.h>

Detailed Description

template<typename MatrixType_, int UpLo_>
class Eigen::PastixLDLT< MatrixType_, UpLo_ >

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.

This class is used to solve the linear systems A.X = B via a LDL^T supernodal Cholesky factorization available in the PaStiX library. The matrix A should be symmetric and positive definite WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX The vectors or matrices X and B can be either dense or sparse

Template Parameters
MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>
UpLoThe part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX

This class follows the sparse solver concept .

See also
Sparse solver concept, class SimplicialLDLT

Public Member Functions

void analyzePattern (const MatrixType &matrix)
 
void compute (const MatrixType &matrix)
 
void factorize (const MatrixType &matrix)
 

Member Function Documentation

◆ analyzePattern()

template<typename MatrixType_, int UpLo_>
void Eigen::PastixLDLT< MatrixType_, UpLo_ >::analyzePattern ( const MatrixType & matrix)
inline

Compute the LDL^T symbolic factorization of matrix using its sparsity pattern The result of this operation can be used with successive matrices having the same pattern as matrix

See also
factorize()

◆ compute()

template<typename MatrixType_, int UpLo_>
void Eigen::PastixLDLT< MatrixType_, UpLo_ >::compute ( const MatrixType & matrix)
inline

Compute the L and D factors of the LDL^T factorization of matrix

See also
analyzePattern() factorize()

◆ factorize()

template<typename MatrixType_, int UpLo_>
void Eigen::PastixLDLT< MatrixType_, UpLo_ >::factorize ( const MatrixType & matrix)
inline

Compute the LDL^T supernodal numerical factorization of matrix


The documentation for this class was generated from the following file: